Toxic pollution and employment dynamics: uncovering Europe's left-behind places

Charlotte Sophia Bez^{1,2} Maria Enrica Virgillito¹

¹Institute of Economics and EMbeDS, Scuola Superiore Sant'Anna, Pisa, Italy ²Potsdam Institute for Climate Impact Research, Potsdam, Germany

La transizione ecologica: un'opportunità di sviluppo per l'Italia

25 January 2023, CNEL

Introduction

- Dark sides of economic activity, e.g., pollution, are still relatively understudied by the economic literature. More attention has been devoted to health-related effects, fewer investigations have been conducted in terms of the negative effects propagating from pollution to socio-economic deprivation.
- Emergence of toxic pollution as a cause and consequence of growing regional inequalities adds a new dimension to recent geography studies.
- Look at nexus between long-term exposure to toxic industrial pollution, and the spillovers from the plant's production activities in terms of employment, wages and demographic dynamics.
- We investigate the environmental dimension of left-behind places, proposing toxic pollution as structural socio-economic driver.

What are left-behind places?

• The literature on left-behind places

Focus on the geography of discontent leading to populist policy platforms, i.e. investigating social, cultural, political dimensions. [e.g., MacKinnon et al., 2022; Rodríguez-Pose, 2018; Dijkstra et al., 2020]

So far has remained silent on the environmental dimension, even though:

- spatiality of power: rural areas are extraction sites for natural resources, raw materials to support urban areas (McKinney, 2016);
- Stratification of inequality: environmental policies have strong implications for left-behind places where emission-intense/extractive industries are located (compound disadvantage, globalization and deindustrialization).

Hence: Need to understand the **political economy of toxic industries** and their interaction with the geography of left-behind places.

Propagation channels

- Path dependence and regional lock-ins (Grabher, 1993; Boschma, 2007; Frenken and Boschma, 2007; Cecere et al., 2014);
- environmental technology in toxic industries and its effect on labour (Vivarelli et al., 2022; Violante, 2008);
- spatial inequality feedback loops (Pinheiro et al., 2022) and spatiality of power (Lerner, 2012; Freudenburg, 2005; Massey, 2009).

Industrial Facilities, sourced from E-PRTR

- Source: European Pollutant Release and Transfer Register (E-PRTR) provided by the European Environment Agency (EEA).
- The E-PRTR contains environmental data from over 24,000 georeferenced industrial facilities in Europe, with information on quantities of 91 key pollutants released to air, water and land.
- Facility-level pollution used to calculate annual chemical-specific air pollution of continuous polluters aggregated by sector at NUTS-3 level.
- Coverage:
 - ▶ in space: 15 European countries, approx. 1200 NUTS-3 regions
 - in time: yearly data, 2007 2018
 - sectoral: 7 different activities: Agriculture and leather, chemicals, energy, metals, minerals, paper and wood, waste

List of Facility Names: top 10

Name of Facility	Industry	City	Log Poll.	Name of Facility	Industry	City	Log Poll.
Germany				Great Britain			
LEAG, Kraftwerk Jänschwalde RWE Power AG Kraftwerk Niederaußem RWE Power AG Kraftwerk Niederaußem RWE Power AG - Kraftwerk Beurath Kraftwerk Bobberg LEAG, Kraftwerk Schwarze Pumpe LEAG Lausitz Energie AG Kraftwerk Lippendorf RWE Power AG - Kraftwerk Frimmersdorf Uniper Kraftwerke GmbH Kraftwerk Scholven BASF SE	Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Chemicals	Teichland Eschweiler Bergheim Grevenbroich Boxberg / O. L. Spremberg Neukieritzsch Grevenbroich Gelsenkirchen Ludwigshafen	26.90181 26.57141 26.43846 26.35705 26.06029 26.02941 25.6448 25.61316 25.25633 25.21908	Drax Power Station EPR Longannet Power Station Eggborough Power Station Aberthaw Power Station Cottam Ash Disposal Site West Burton Power Station Fiddlers Ferry Power Station EPR Ferrybridge C Power Station EPR Ratcliffe-O-Sar Power Station EPR Port Talloot Steelworks Tata Steel	Energy Energy Energy Energy Waste Energy Energy Energy Energy Metals	SELBY Kincardine Eggborough Aberthaw Cottam Retford WARRINGTON Knottingley NOTTINGHAM PORT TALBOT	26.58055 25.37915 25.33629 25.29912 25.25431 25.20857 25.19221 25.15118 25.08509 24.96971
France				Italy			
Arzelormittal Franca Site De Dunkerque Arzelormittal Franca Site De Dunkerque Edif - Up Cordennais Gazel Enrogie - Centrale Emile Huchet Raffinerie De Normandie Engie Thermigue Franca - Centrale Dk6 Edf Unite De Production Thermique Du Havre Raffinerie De Port-Jørome / Gravenchon Edf - Cycle Combiné Gaz De Blénod Gazel Enregie - Centrale De Provence	Metals Metals Energy	Dunkerque Fos Sur Mer Cordemais St Avold Harfleur Dunkerque Le Havre Notre Dame De Gr. Blenod Les Pont Meyreuil	25.58061 25.01067 24.46878 24.29204 24.27969 24.07337 24.03441 23.86249 23.66699 23.63564	Enel Produzione S.p.A. Brindisi ILWA S.p.A. Enel Produzione S.p.A Torrevaldaliga Nord Sarlus vil CENTRALE TERMOBLETTRICA DI TARANTO Enel Produzione S.p.A. Venezia Fiume Santo S.p.A. TIRREND POWER S.p.A. Enel Produzione S.p.A. La Spezia Enipower S.p.A.	Energy Metals Energy Energy Energy Energy Energy Energy Energy Energy	Brindisi Taranto Civitavecchia Sarroch Taranto Venezia Porto Torres Quiliano La Spezia Ferrera Erbognone	25.57953 25.24196 25.11516 24.92747 24.83107 24.56382 24.38021 24.21185 24.17314 24.05704

Table: Names of top-polluting facilities by country, showing top-10 polluting facilities for a selection of four countries (Germany, Great Britain, France, Italy). The column "Log Poll." refers to total facility pollution across all years.

Measuring toxic pollution

Different pollutants have different toxicities. We account for the variation of toxicity by multiplying the quantity (mass in kilogram per year) of each pollutant by a toxicity weight that we source from the USEtox 2.12 data base.

At sectoral-regional level, toxic pollution can be written as:

$$Tox \ Poll_{srt} = \sum_{i=1}^{N} \sum_{p=1}^{P} Tox \ Weight_{p} * Quantity_{ipsrt}$$
 (1)

- i are facilities
- p are the 42 different pollutants, each with a distinct weight
- s indexes sectors, r NUTS-3 regions, and t years

Toxic pollution is an indicator for the scale or **intensity effect**.

Toxic pollution by industry

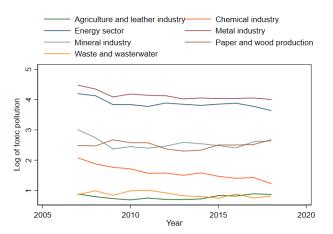


Figure: Mean toxic pollution by industry from 2007 to 2018. Source: Own calculation based on E-PRTR.

Why industries matter

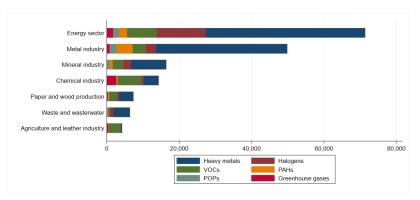


Figure: Toxic pollution industry, disaggregated by pollutant groups, ranked by share of toxic pollution, over 2007–2018. Source: Own calculation based on E-PRTR. (P)AHs: (polycyclic) aromatic hydrocarbons; POPs persistent organic pollutants; VOCs volatile organic compounds.

Concentration index of pollutants

Besides the level of toxic pollution, we are interested in the pollution portfolio, i.e., in the composition of toxins, as we observe a great level of heterogeneity with respect to the number of distinct pollutants emitted at facility level.

To capture this heterogeneity, we construct a Herfindahl-Hirschman Index (HHI) of the concentration of share of distinct pollutants at facility-year level aggregated across regions and sectors:

$$HHI_{srt} = \frac{\sum_{i=1}^{N} \sum_{\tilde{p}=1}^{\tilde{p}\tilde{p}_{i}^{2}}}{N_{srt}} * \frac{Tox \ Poll_{srt}}{Tox \ Poll_{rt}}$$
(2)

where

$$\tilde{p} = \frac{p}{\sum_{p}} \tag{3}$$

Pollutant concentration allows us to investigate a possible **composition effect**.

Concentration index of pollutants

This concentration index can approximate **efficiency**:

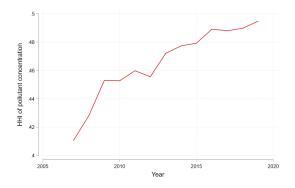


Figure: HHI of pollutant concentration, 2007-2019.

- We observe a reduction of toxic emissions of 0.3 per cent, comparing 2019 to 2007.
- This trend is mirrored by the increase of the concentration index, i.e. facilities on average reduce their number of pollutants.
- The graph on the left illustrates this as HHI increased from 0.41 in 2007 to 0.49 in 2019.

Concentration index of pollutants, by industry

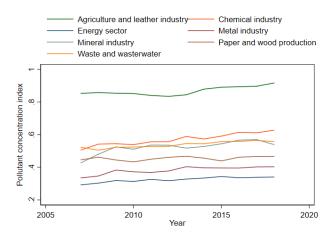


Figure: Mean concentration index of pollutants by industry from 2007 to 2018. Source: Own calculation based on E-PRTR.

Scatterplot of pollutant concentration and toxic pollution

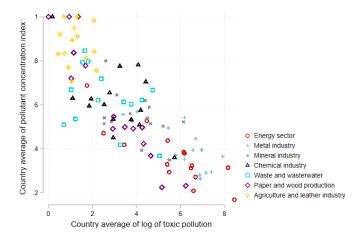


Figure: Scatterplot of country averages of pollutant concentration (y-axis) and toxic pollution (x-axis) across 2007-2018. Source: Own calculation based on E-PRTR.

Mapping the Facilities

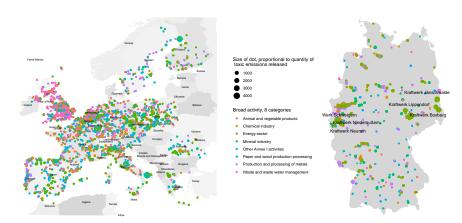


Figure: Spatial distribution of industrial facilities in 15 European countries (left panel) and of Germany (right panel) over 2007 - 2018. Color of the dots indicates industry, size of the dot indicates quantity of toxic pollution. Source: Own calculation based on E-PRTR.

Mapping the facilities

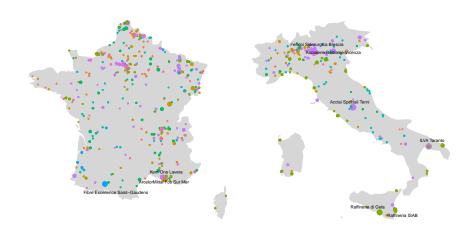


Figure: Spatial distribution of industrial facilities in France (left panel) and of Italy (right panel) Color of the dots indicates industry, size of the dot indicates quantity of toxic pollution. Source: Own calculation based on E-PRTR.

Lower quartiles of industry empl. and left-behind regions

Map of industry employment, lowest 25th quartile (averaged across 2017–2018)
Regions that belong to the lowest 25th quartile in yellow.

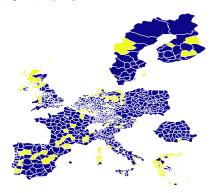


Figure: NUTS-3 map of 25th quartiles of industry employment, averaged across all years. In yellow are the so-called left-behind regions.

25th quartiles are clustered in:

- Scotland, Wales, Highlands
- South West France
- Central Spain
- East Portugal
- East Germany, Pfalz
- South Italy plus islands
- Western Austria
- Greece

Coincidence of regions?

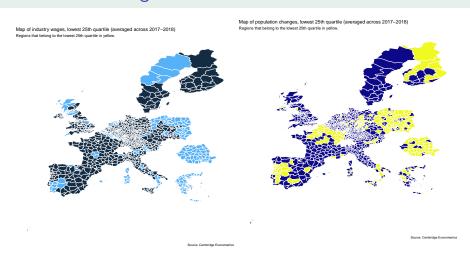


Figure: NUTS-3 map of 25th quartiles of industry wages (left panel) and population changes (right panel), averaged across all years.

January 2023

Conclusion

- We conceptualize left-behind regions through economic deprivation and demographic loss and explore their environmental dimension.
- (via Quantile regression estimation) We find opposing effects for left-behind places vis-à-vis the rest:
 - lack + in terms of toxic pollution, signalling material dependence of left-behind places
 - in terms of pollutant concentration, signalling LS effects of environmental technologies,

for employment, wages, demographic losses in left-behind places.

 Contemporary crises overlapping across social, economic and ecological spheres are creating systemic inequalities across space and maintain the status quo of reproductive injustices.

Policy Implications

- In order for environmental and climate policies to even out territorial inequalities, policy-makers have to take into account local contexts in terms of industrial specialization, technological lock-ins, employment segregation as well as the material dependence on highly toxic industries.
- Strong need for a place-sensitive regional policy, with an urgent focus on left-behind places, that connects to the broader concept of the geography of discontent, i.e., see rise of populism. Left-behind places would have reason to become subjects in environmental struggles and the green transition.
- It is crucial to understand the policy implications of a labour-saving effect of environmental technology in polluting industries, i.e., skill and task mismatch vis-à-vis green jobs leading to a compound disadvantage of those left-behind.